| Upload Date | November 12 2025 03:20 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4060 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | LENOVO 83DG |
| Motherboard | LENOVO LNVNB161216 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core i7-14650HX |
| Topology | 1 Processor, 16 Cores, 24 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6765
1.26 KIPS |
|
|
Image Classification (HP)
|
99% |
11937
2.23 KIPS |
|
|
Image Classification (Q)
|
99% |
6146
1.15 KIPS |
|
|
Image Segmentation (SP)
|
100% |
12213
198.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
16508
267.6 IPS |
|
|
Image Segmentation (Q)
|
98% |
10827
176.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
90587
105.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
252471
294.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
80130
93.9 IPS |
|
|
Object Detection (SP)
|
100% |
8374
664.2 IPS |
|
|
Object Detection (HP)
|
100% |
15623
1.24 KIPS |
|
|
Object Detection (Q)
|
84% |
7512
605.9 IPS |
|
|
Face Detection (SP)
|
100% |
20654
245.4 IPS |
|
|
Face Detection (HP)
|
100% |
32416
385.2 IPS |
|
|
Face Detection (Q)
|
97% |
18246
217.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
41941
323.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
81472
627.7 IPS |
|
|
Depth Estimation (Q)
|
77% |
34165
273.3 IPS |
|
|
Style Transfer (SP)
|
100% |
139491
179.3 IPS |
|
|
Style Transfer (HP)
|
100% |
344709
443.1 IPS |
|
|
Style Transfer (Q)
|
98% |
126346
162.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
27354
1.01 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
45685
1.69 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
21330
789.8 IPS |
|
|
Text Classification (SP)
|
100% |
3218
4.30 KIPS |
|
|
Text Classification (HP)
|
99% |
3741
4.99 KIPS |
|
|
Text Classification (Q)
|
97% |
1797
2.41 KIPS |
|
|
Machine Translation (SP)
|
100% |
3740
64.4 IPS |
|
|
Machine Translation (HP)
|
100% |
4037
69.5 IPS |
|
|
Machine Translation (Q)
|
70% |
1775
33.3 IPS |