| Upload Date | November 11 2025 07:38 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5080 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | LENOVO 83F5 |
| Motherboard | LENOVO LNVNB161216 |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
11988
2.23 KIPS |
|
|
Image Classification (HP)
|
100% |
19386
3.61 KIPS |
|
|
Image Classification (Q)
|
100% |
10479
1.95 KIPS |
|
|
Image Segmentation (SP)
|
100% |
23218
376.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
34862
565.1 IPS |
|
|
Image Segmentation (Q)
|
98% |
20496
333.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
165154
192.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
466932
544.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
146902
172.1 IPS |
|
|
Object Detection (SP)
|
100% |
15026
1.19 KIPS |
|
|
Object Detection (HP)
|
100% |
25522
2.02 KIPS |
|
|
Object Detection (Q)
|
86% |
12550
1.01 KIPS |
|
|
Face Detection (SP)
|
100% |
44077
523.7 IPS |
|
|
Face Detection (HP)
|
100% |
66431
789.3 IPS |
|
|
Face Detection (Q)
|
97% |
37524
447.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
70577
543.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
135904
1.05 KIPS |
|
|
Depth Estimation (Q)
|
78% |
54815
437.9 IPS |
|
|
Style Transfer (SP)
|
100% |
260249
334.6 IPS |
|
|
Style Transfer (HP)
|
100% |
862224
1.11 KIPS |
|
|
Style Transfer (Q)
|
98% |
223474
288.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
40558
1.50 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
69946
2.58 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
32471
1.20 KIPS |
|
|
Text Classification (SP)
|
100% |
3650
4.87 KIPS |
|
|
Text Classification (HP)
|
100% |
4744
6.33 KIPS |
|
|
Text Classification (Q)
|
97% |
2233
2.99 KIPS |
|
|
Machine Translation (SP)
|
100% |
6446
111.0 IPS |
|
|
Machine Translation (HP)
|
100% |
6580
113.3 IPS |
|
|
Machine Translation (Q)
|
70% |
2968
55.7 IPS |