| Upload Date | November 10 2025 03:16 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5090 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E32 |
| Motherboard | Micro-Star International Co., Ltd. MAG Z890 TOMAHAWK WIFI (MS-7E32) |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
16125
3.00 KIPS |
|
|
Image Classification (HP)
|
100% |
21324
3.97 KIPS |
|
|
Image Classification (Q)
|
100% |
13693
2.55 KIPS |
|
|
Image Segmentation (SP)
|
100% |
25560
414.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
30185
489.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
23448
381.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
369598
431.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
878274
1.02 KIPS |
|
|
Pose Estimation (Q)
|
96% |
300575
352.1 IPS |
|
|
Object Detection (SP)
|
100% |
21296
1.69 KIPS |
|
|
Object Detection (HP)
|
100% |
26974
2.14 KIPS |
|
|
Object Detection (Q)
|
85% |
17389
1.40 KIPS |
|
|
Face Detection (SP)
|
100% |
58158
691.0 IPS |
|
|
Face Detection (HP)
|
100% |
72600
862.7 IPS |
|
|
Face Detection (Q)
|
97% |
47630
568.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
100722
776.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
179526
1.38 KIPS |
|
|
Depth Estimation (Q)
|
77% |
71655
573.9 IPS |
|
|
Style Transfer (SP)
|
100% |
556887
715.9 IPS |
|
|
Style Transfer (HP)
|
100% |
1538201
1.98 KIPS |
|
|
Style Transfer (Q)
|
98% |
473416
610.5 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
67337
2.49 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
93044
3.44 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
48879
1.81 KIPS |
|
|
Text Classification (SP)
|
100% |
4288
5.72 KIPS |
|
|
Text Classification (HP)
|
100% |
5106
6.82 KIPS |
|
|
Text Classification (Q)
|
97% |
2334
3.13 KIPS |
|
|
Machine Translation (SP)
|
100% |
5534
95.3 IPS |
|
|
Machine Translation (HP)
|
100% |
5507
94.9 IPS |
|
|
Machine Translation (Q)
|
70% |
2703
50.7 IPS |