| Upload Date | November 09 2025 10:44 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Professionnel (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E54 |
| Motherboard | Micro-Star International Co., Ltd. PRO Z890-S WIFI (MS-7E54) |
| Power Plan | Utilisation normale |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 96.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4072
757.3 IPS |
|
|
Image Classification (HP)
|
100% |
6112
1.14 KIPS |
|
|
Image Classification (Q)
|
100% |
8109
1.51 KIPS |
|
|
Image Segmentation (SP)
|
100% |
4045
65.6 IPS |
|
|
Image Segmentation (HP)
|
100% |
9243
149.8 IPS |
|
|
Image Segmentation (Q)
|
99% |
11910
193.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
12157
14.2 IPS |
|
|
Pose Estimation (HP)
|
99% |
11399
13.3 IPS |
|
|
Pose Estimation (Q)
|
97% |
38502
45.1 IPS |
|
|
Object Detection (SP)
|
100% |
3588
284.6 IPS |
|
|
Object Detection (HP)
|
100% |
5957
472.5 IPS |
|
|
Object Detection (Q)
|
88% |
9444
756.8 IPS |
|
|
Face Detection (SP)
|
100% |
8050
95.7 IPS |
|
|
Face Detection (HP)
|
100% |
16713
198.6 IPS |
|
|
Face Detection (Q)
|
100% |
25955
308.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
12921
99.6 IPS |
|
|
Depth Estimation (HP)
|
98% |
22260
172.0 IPS |
|
|
Depth Estimation (Q)
|
89% |
26503
206.0 IPS |
|
|
Style Transfer (SP)
|
100% |
29893
38.4 IPS |
|
|
Style Transfer (HP)
|
100% |
41833
53.8 IPS |
|
|
Style Transfer (Q)
|
98% |
90267
116.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
5294
195.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
9588
354.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
15646
579.4 IPS |
|
|
Text Classification (SP)
|
71% |
1612
2.33 KIPS |
|
|
Text Classification (HP)
|
71% |
2513
3.63 KIPS |
|
|
Text Classification (Q)
|
92% |
2600
3.49 KIPS |
|
|
Machine Translation (SP)
|
100% |
2083
35.9 IPS |
|
|
Machine Translation (HP)
|
98% |
3694
63.8 IPS |
|
|
Machine Translation (Q)
|
98% |
3772
65.2 IPS |