| Upload Date | November 03 2025 07:13 AM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | AMD Ryzen 5 5600 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 IoT LTSC (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7B89 |
| Motherboard | Micro-Star International Co., Ltd. B450M MORTAR (MS-7B89) |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 5 5600 |
| Topology | 1 Processor, 6 Cores, 12 Threads |
| Identifier | AuthenticAMD Family 25 Model 33 Stepping 2 |
| Base Frequency | 3.50 GHz |
| Cluster 1 | 6 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1915
356.2 IPS |
|
|
Image Classification (HP)
|
100% |
555
103.3 IPS |
|
|
Image Classification (Q)
|
96% |
3672
685.8 IPS |
|
|
Image Segmentation (SP)
|
100% |
1556
25.2 IPS |
|
|
Image Segmentation (HP)
|
100% |
765
12.4 IPS |
|
|
Image Segmentation (Q)
|
97% |
4465
72.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
3719
4.34 IPS |
|
|
Pose Estimation (HP)
|
100% |
3164
3.69 IPS |
|
|
Pose Estimation (Q)
|
86% |
8434
9.97 IPS |
|
|
Object Detection (SP)
|
100% |
1930
153.1 IPS |
|
|
Object Detection (HP)
|
100% |
663
52.6 IPS |
|
|
Object Detection (Q)
|
58% |
2629
287.3 IPS |
|
|
Face Detection (SP)
|
100% |
4313
51.2 IPS |
|
|
Face Detection (HP)
|
100% |
1434
17.0 IPS |
|
|
Face Detection (Q)
|
96% |
6859
81.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
4869
37.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
1858
14.3 IPS |
|
|
Depth Estimation (Q)
|
78% |
8524
68.0 IPS |
|
|
Style Transfer (SP)
|
100% |
9274
11.9 IPS |
|
|
Style Transfer (HP)
|
100% |
7661
9.85 IPS |
|
|
Style Transfer (Q)
|
87% |
12951
16.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1799
66.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
1573
58.1 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
2659
98.5 IPS |
|
|
Text Classification (SP)
|
100% |
1242
1.66 KIPS |
|
|
Text Classification (HP)
|
100% |
674
900.0 IPS |
|
|
Text Classification (Q)
|
97% |
1064
1.43 KIPS |
|
|
Machine Translation (SP)
|
100% |
1900
32.7 IPS |
|
|
Machine Translation (HP)
|
100% |
742
12.8 IPS |
|
|
Machine Translation (Q)
|
68% |
2883
55.7 IPS |